Basic immunology

Lecture 16. The complement system

Timea Berki

Complement system

- Major <u>effector</u> system of the humoral IR
- Component of the <u>innate (non-specific)</u> immune IR
- Results <u>immediate</u> response
- Connection to the specific IR

Discovery:

1890: Jules Bordet's experiment:

- Immune serum against Vibrio cholerae caused lysis of the bacteria
- Heating the antiserum destroyed this activity
- Addition of a fresh serum to the antiserum restored its killing ability

Paul Ehrlich:

- 2 components of the ANTISERUM:
- \rightarrow heat stable: specific antibody
- → heat sensitive: responsible for the lytic activity → COMPLEMENT

Components:

- Inactive factors in the serum and body fluids which can activate each other in an enzyme cascade
- <u>Cell surface receptors</u> (CR) for binding the activated complement components
- <u>Regulatory proteins</u>: soluble and cell surface bound to prevent uncontrolled complement activation

Activation of the complement enzyme cascade

Components of the classical pathway

Cascade-like activation Limited proteolysis: C3 → C3a + C3b Amplification

Activatory surface (molecule, cell surface structure etc.)

MBL forms a complex with serin proteases that resambles the C1qrs complex

Figure 2-11 Immunobiology, 6/e. (© Garland Science 2005)

Main components and effector actions of complement

Figure 2-19 Immunobiology, 6/e. (© Garland Science 2005)

Membrane Attack Complex (MAC)

MAC

C3b-binding receptors

Complement receptor expressing cells (RBC, lymphocytes, monocytes, Macrophages, neutrophyls, FDCs etc.)

Complement receptors

Receptor	Specificity	Functions	Cell types
CR1 (CD35)	C3b, C4b iC3b	Promotes C3b and C4b decay Stimulates phagocytosis Erythrocyte transport of immune complexes	Erythrocytes, macrophages, monocytes, polymorphonuclear leukocytes, B cells, FDC
CR2 (CD21)	C3d, iC3b, C3dg Epstein– Barr virus	Part of B-cell co-receptor Epstein–Barrvirus receptor	B cells, FDC
CR3 (Mac-1) (CD11b/ CD18)	iC3b	Stimulates phagocytosis	Macrophages, monocytes, polymorphonuclear leukocytes, FDC
CR4 (gp150,95) (CD11c/ CD18)	iC3b	Stimulates phagocytosis	Macrophages, monocytes, polymorphonuclear leukocytes, dendritic cells
C5a receptor	C5a	Binding of C5a activates G protein	Endothelial cells, mast cells, phagocytes
C3a receptor	C3a	Binding of C3a activates G protein	Endothelial cells, mast cells, phagocytes

Figure 2-31 Immunobiology, 6/e. (© Garland Science 2005)

Clearance of immuncomplexes from blood

- 1. Immuncomplex formation
- 2. Complement activation C3b binding
- 3. Binding of IC to CR1 of the RBCs
- 4. Transport to the spleen and liver
- 5. Macrophages bind immuncomplexes

and take them up by phagocytosis

Inefficient clearance: immuncomplex deposition

OPSONOZATION: C3b and IgG serve as opsonins

B-cell co-activation through CR2

Functions of the complement:

- 1. Lysis of cells, bacteria, viruses
- 2. Opsonization, which promotes phagocytosis of particulate antigens
- 3. Binding to complement receptors results activation of the inflammatory response and specific IR
- 4. Immune clearance of immune complexes from circulation

Regulatory proteins

Regulatory proteins of classical pathway

Regulation of alternative pathway

