Basic Immunology

26th lecture: Oral mucosal diseases

Zoltán Kellermayer

Oral mucosal diseases

- 1. Autoimmune ulcerative diseases
- 2. Recurrent aphthous stomatitis
- 3. Oral candidiasis
- 4. Herpes Simplex infection

Autoimmune ulcerative diseases

Mucous membrane pemphigoid

Pemphigus vulgaris

Rashid H et al. 2019. American Journal of Clinical Dermatology

Oral epithelium

Built up of cells (mainly keratinocytes) + Basement membrane

Basement membrane: connects epithelium to lamina propria Consists of: basal cell plasma membrane + lamina lucida + lamina densa + sublamina densa

Cell – cell connections: <u>desmosomes</u> + gap junctions, tight junctions

Cell – Basement membrane connection: *hemidesmosome*

Oral epithelium

Mestecky, Strober, Russell, Kelsall, Cheroutre, Lambrecht. Mucosal Immunology. 4th edition. Copyright © 2015 by Elsevier, Inc

Epithelial and Basement membrane (auto)antigens

Epithelial and Basement membrane (auto)antigens

Pemphigus vulgaris Desmoglein 3 (important in desmosome)

Eurolmmun

Epithelial and Basement membrane (auto)antigens

Mucous membrane pemphigoid

Laminins: non-collagenous glycoproteins laminin 5, laminin 6

Bullous pemphigoid BP180: transmembrane molecule

BP230 (=BPAG1, Bullous pemphigoid antigen 1): hemidesmosome inner plate

Diagnosis

Oesophagus: detection of antibodies against prickle-cell desmosomes (pemphigus) and basal lamina (pemphigoid).

Transfected cells: Monospecific detection of antibodies against **Dsg1**, **Dsg3** (pemphigus), **BP230 gC** (pemphigoid), and **collagen type VII** (EBA).

Recurrent aphthous stomatitis (RAS)

Characterized by oral ulcers Heals spontaneously in 7-21 days Prevalence: ~10%

Genetics:

~90% concordance in identical twins Possible association with HLA-A2 and HLA-B12

Cause: ~unknown

(Definition: recurrent oral ulceration in the absence of known systemic factors...)

Hypothesis:

Unknown trigger (chemical or infective agent) \rightarrow decrease in normal suppression \rightarrow autoimmune response to oral mucosa

Recurrent aphthous stomatitis (RAS)

Findings:

Autoantibodies against epithelial cells (leading to cell death) Cytotoxic T cells sensitized to oral mucosa

Trigger agent:

Possibly cross-reacting with oral mucosa

Candidate: heat-shock protein (HSP) 60kDa

Microbial HSP \rightarrow stimulate mucosal Langerhans cells \rightarrow generation of T-cells that recognize microbial HSP + homologous human HSP

Several other types of (non-aphthous) oral ulcers with underlying causes (*Hematological diseases, gastrointestinal enteropathies, dermatological conditions etc...*)

Differential diagnosis is important!

Oral candidiasis

Candida species: present in ~40% of population

Oral candidiasis: usually with underlying causes Immunosuppression: therapy, HIV Other oral diseases present Xerostomia

Main types:

Acute pseudomembranous candidiasis (very young or elderly)
Acute atrophic candidiasis (antibiotics)
Chronic atrophic candidiasis (prosthesis)
Chronic hyperplastic candidiasis (risk of malignant transformation)
Erythematous candidiasis (HIV infection)

Mucosal immune response to Candida

Innate immune response: **polymorphonuclear** cells found in biopsies

Oral candidiasis present in 40% of HIV+, 75% of AIDS patients \rightarrow role of **T cells** T_H1: elevated IL-12, IFN γ observed in patients T_H17: elevated IL-17 and IL-23 associated with protection T_H17-deficient patients are susceptible to oral candidiasis

IgA-deficiency: increased prevalence of oral candidiasis \rightarrow role of **B cells**

Secreted aspartyl protease 2 (SAP2): important Candida antigen Immunization agatinst SAP2 → secretory IgA-type antibodies → protection

protection in mouse model

Herpes simplex

Usually caused by Herpes simplex virus 1 (HSV1)

Prevalence: 58% between ages 14-49

Primary infection: herpetic gingivostomatitis

Children or young adults

Pathogenesis: lytic replication of the virus in epithelial cells \rightarrow lysis of keratinocytes Immune response: inflammation + adaptive (neutralizing antibodies + CD8+ T_C) Self-limiting in immunocompetent patients

Characteristic clinical appearance: ulceration of oral mucosa + malaise, fever

Therapy: acyclovir only at beginning of infection + symptomatic treatment

Herpes simplex

HSV1: Rapid transmission to peripheral sensory nerve fibers of n. trigeminus Retrograde transport of the virus to trigeminal ganglion Before appearance of neutralizing antibodies!!

Stays latent for years

Reactivation: in 15-40% of seropositive patients; appears as herpes simples labialis

Trigger factors: UV, stress, illness, immunocompromised conditions

Recurrence: usually in same spot

Herpes simplex labialis

Virus migration from neural cell body to periphery infects and replicates within keratinocytes keratinocyte death \rightarrow inflammation \rightarrow papule formation \rightarrow vesicle formation

Resolve spontaneously in 7-10 days appearance of neutralizing antibodies T_H : produce IFN γ and IL-12 T_C : cytotoxicity (keratinocyte lysis!)