# Immunológia alapjai

23. előadás:

### Regionális immunitás: MALT + SALT Szájüreg immunológiai kompenensei. Orális immunválasz molekuláris és celluláris komponensei.

Kellermayer Zoltán

### **Regionális immunrendszer**

Speciális funkcióval bíró, meghatározott anatómiai helyszíneken lévő immunsejtek és molekulák összessége

Nyálkahártya MALT: Mucosa Associated Lymphoid Tissue

Bőr SALT: Skin Associated Lymphoid Tissue



# Kétféle testfelszín



Külső réteg: Fizikai barrier

Mélyebb réteg: Immun sejtek

Drenáló másodlagos nyirokszövetek...

# Intesztinális immunrendszer: bevezetés

### Felszín: 200 m<sup>2</sup>

~5x10<sup>10</sup> össz limfocita szám (vér: 10<sup>10</sup>)

Nagyszámú baktérium: 10<sup>14</sup>

Veszélytelen (vagy akár fontos) antigének: étel + mikrobiom

Az immunrendszernek a nagyszámú, tolerálandó antigén között kell megtalálni a kisszámú, de annál veszélyesebb patogént.

Támadó immunválasz és tolerancia közti finoman szabályozott egyensúly

# Intesztinális immunrendszer áttekintése



### Speciális struktúrák

M sejt Migráló APC Peyer plakk IgA Effektor sejtek: T sejt, veleszületett limfoid sejtek (ILC), NK, MAIT, makrofág, eozinofil, hízósejt, granulocita

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

### **Organizált MALT (O-MALT)**

Antigén felismerés, antigén-specifikus limfociták aktivációja, effector funkciók és memória indukciója

"Programozott" nyirokszövetek: in utero fejlődnek meghatározott időben és meghatározott helyeken

Peyer plakkok, mandulák

"Indukálható" nyirokszövetek: születés után fejlődnek/alakulnak ki antigén ingertől függően

Kriptoplakk (CP) – izolált nyiroktüsző (ILF) spektrum

# Diffúz MALT (D-MALT)

"Effektor szövet"

Memória sejtek, aktivált effektor sejtek, plazma sejtek

# Programozott nyirokszövetek a gasztrointesztinális traktusban: Peyer plakk



SED: Szubepiteliális dóm FAE: Follikulus-asszociált epitél



UM Mörbe et al 2021. Mucosal Immunology 14:793-802

# A MALT indukálható és dinamikus komponense: SILT (Solitary intestinal Iymphoid tissues)





Buettner M and Lochner M (2016) Development and function of secondary and tertiary lymphoid organs in the small intestine and the colon. Front Immunol.

*ILF: Isolated lymphoid follicle, izolált nyiroktüsző LTi: Lymphoid Tissue inducer cell, nyirokszövet indukáló sejt* 

Alacsony antigén mennyiség: kriptoplakk tulsúly Nagy antigén mennyiség: ILF túlsúly



LTi+T sejtek/B sejtek/FDC/GC reakció

# Epitél sejtek

Kehely sejt: nyák szekréció nyák: belső (dúsabb) és külső réteg antigén "mintavételezés"...

Paneth sejt: anti-mikrobiális peptidek szekréciója (defenzin, REGIII)

M-sejt: antigén transzport

...mind az intesztinális (epitél) őssejtből származnak

Az epitél sejtek szigorúan szabályozott módon mintázatfelismerő receptorokat expresszálnak (TLR, NLR)

Ezek aktivációja okozhat gyulladást (patogének ellen) vagy toleranciát (normál bakteriális flóra ellen)

# Az M sejte



# Bacterium M cell M cell Output Fig 14-3

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8<sup>th</sup> edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

(Nem antigénprezentáló sejt!)

# állítanak a bél lumene felől az alattuk mmunsejtekhez





M sejt régió

# Kehely sejtek: nem csak nyák szekréció...



GAP: Goblet cell associated Antigen Passages (Kehely sejt asszociált antigén járat)

Lumen antigének transzportja a mononukleáris fagocitákhoz

Gustafsson et al. eLife 2021;0:e67292. DOI: https://doi.org/10.7554/eLife.67292

### Dendritikus sejtek, makrofágok

Antigén prezentáció a mezenteriális nyirokcsomókban Általában toleranciát indukálnak (IL-10, TGF $\beta$ ) DC: retinal dehidrogenázt tartalmaznak  $\rightarrow$  retinolsavat szekretálnak  $\rightarrow$  bélhoming molekulák megjelenése

### Veleszületett limfoid sejtek (ILC, Innate lymphoid cells)

- Limfoid sejtek, melyek nem rendelkeznek antigén receptorral Citokineket szekretálnak
- ILC1: NK + nem-citotoxikus ILC1
- ILC2: helmintek elleni immunválasz, allergia (IL-5, IL-13)
- ILC3: nyálkahártya gyógyulás (IL-22), gyulladás (IL-17a) (+ LTi sejtek)

# Adaptív humorális immunválasz a bélben

IgA a fő antitest a nyálkahártyákon

~2g IgA termelődik naponta

Nagymennyiségű TGFβ IgA izotípus váltást eredményez (származás: epitél és DC) Neutralizálás: mikróbák/toxinok epitélhez való kötődését/átjutását akadályozza meg IgA: dimer, *poly-lg receptor* segítségével jut át az epitélen (=transcytosis)



Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

# Az IgA az epitél sejteken keresztül a bél lumenbe jut



Fig 14-8

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

# Bél T sejt populációk

### Elhelyezkedés

Diffúzan szétszórva:

Intraepiteliális limfociták: elsősorban CD8<sup>+</sup> vagy γδ T sejtek

Lamina propria limfociták: főleg CD4<sup>+</sup> effektor/memória sejtek

Organizált nyirokszövetekben:

Peyer plakkok, izolált nyiroktüsző

főleg CD4<sup>+</sup> T sejtek (Treg, follikuláris helper T sejt)

### T sejtek típusai

T<sub>H</sub>17 (~*ILC3!*)

IL-17 és IL-22 termelés

fontos szerep az extracelluláris patogének elleni immunválaszban

T<sub>H</sub>2 (~*ILC2!*)

IL-4 és IL-13 termelés

helmintek elleni immunválaszban játszanak fontos szerepet

Regulatórikus T sejtek (Treg)

 $TGF\beta$  és IL-10 termelés

fontosak a nem patogén mikróbák elleni tolerancia kialakításában

# Bélbe történő limfocita homing

|                   | Endotél  | Leukocita |
|-------------------|----------|-----------|
| Adhéziós molekula | MAdCAM-1 | α4β7      |
| Kemokin           | CCL25    | CCR9      |
|                   | CCL28    | CCR10     |

### **Vedolizumab:** $\alpha 4\beta7$ ellenes antitest, IBDben alkalmazzák



Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

# Bél mikrobiom

### 10<sup>14</sup> baktérium (10-szerese az emberi sejtek számának!)

Helyi és szisztémás immunitás működését is befolyásolják

Baktérium törzsek azonosítása: 16S rRNS szekvenálás (törzs specifikus)

Extraintesztinális következmények Rheumatoid arthritis Allergiás megbetegedések (asthma)

### Gyakorlati példa:

*Clostridium difficile* fertőzés: normál bélflóra károsodik az antibiotikum használat miatt, emiatt elszaporodik a C. difficile

Kezelési lehetőség: széklet transzplantáció (egészséges egyénből származó bélflóra)

# Bőr immunrendszer



2m<sup>2</sup> ~2x10<sup>10</sup> limfocita Fizikai (és kémiai) barrier

(Nap)égés Mikróbák Traumák

Fig 14-9

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

# Bőr immunrendszer sejtjei

### Keratinociták

Fizikai barrier

Citokin termelés: TNF, IL-1, IL-6, IL-18, IL-25, IL-33 (gyulladás); IL-10 (reguláció)

Kemokinek: CCL27

Növekedési faktorok: PDGF, FGF, GM-CSF

Anti-microbiális peptidek: defenzinek, kathelicidinek

Aktiváció: mintázat felismerő receptorokon keresztül (TLRs, NLRs)

### Dendritikus sejtek, makrofágok

Elsősorban Langerhans sejtek

Antigének fagocitózisát követően a regionális nyirokcsomókba vándorolnak

Antigént prezentál a T sejteknek, bőrbe való homingot idéz elő

### T sejtek

Intraepidermális: főleg CD8<sup>+</sup> vagy  $\gamma \delta$  T sejtek Dermális: CD4<sup>+</sup> (T<sub>H</sub>1, T<sub>H</sub>2, T<sub>H</sub>17, T<sub>reg</sub>), főleg memória T sejtek

# Bőrbe történő homing

|                   | Endothelium | Leukocyte |
|-------------------|-------------|-----------|
| Adhesion molecule | E-selectin  | CLA       |
|                   | CCL17       | CCR4      |
| Chemokines        | CCL1        | CCR8      |
|                   | CCL27       | CCR10     |



Fig 14-9

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc



Induktív és effektor helyszín egyszerre

Veleszületett és adaptív komponensek

Szisztémás és lokális immunitás

Része a nyálkahártya-asszociált immunszöveteknek, specializált komponensekkel

Többrétegű laphám + "kemény" szövetek (fogak)

Rágás: sérüléseket okoz

Vastag és sűrű fizikai/kémiai barrier

Leginkább átjárható: periodontális epithel

Állandó, nagymennyiségű antigén: ~100 millió baktérium/ml nyál (~700 faj) ~500kg étel évente

# Szájüreg immunrendszere



DC: dendritikus sejt LC: Langerhans sejt LP: lamina propria IEL: intraepitheliális limfocita

The mucosal immune system in the oral cavity – an orchestra of T cell diversity. Wu RQ et al, Int J Oral Sci. 2014 6:125-32.

# Sejtes elemek

### **Epithel sejtek**

- Első vonalbeli (fizikai + kémiai) barrier
- PRR-t expreszálnak (TLR)
- Gyulladásos citokineket tudnak termelni (IL-1β, IL-6, GM-CSF)
- Különböző típus + vastagság (permeabilitás befolyásolja!)
  - elszarusodó, vastag (>50 réteg, nyelv háta)
  - elnemszarusodó, vastag (~30 réteg, buccalis mukóza)
  - elnemszarusodó, vékony (~10 réteg), Langerhans sejtben gazdag (szájüreg alja) junkcionális epitél

### NK sejt

Langerhans sejt, dendritikus sejt: antigén prezentáló sejtek

Hízósejtek

### CD8αα+ intraepithelialis limfociták

**T-sejtek:** egészséges mukózában kevés, de T<sub>H</sub>17 sejtek fontosak pathologiás esetekben **B-sejtek:** főleg IgA+, kevés IgG+

# Orális epitél barrierek



Tissue-specific immunity at the oral mucosal barrier. Moutsopoulus N et al. Trends Immunol 2018

# Orális epitél barrierek



Oral versus Gastrointestinal Mucosal Immune Niches in Homeostasis and Allostasis. Suarez LJ et al. Front Immunol 2021.



### 750-1000 ml/nap

3 fő nyálmirigy (parotid, submandibularis, sublingualis) + számos minor mirigy

Fontos szerep: fogak fiziko-kémiai védelme orális nyálkahártya immunológiája mukózális gyógyulás

Számos veleszületett és adaptív elemet tartalmaznak

A külfünböző faktorok alacsony koncentrációban vannak jelen, együtt, szinergisztikusan hatnak

Xerostomia: Candidiasisra fokozott hajlam, caries esetén súlyosabb tünetek

# Nyál antitestek

### Típusok

IgA: általában dimer (főleg a nyálmirigyekből), IgG: kevés (szérumból vagy lokális plazma sejtekből) IgM és IgE: nagyon kevés

### IgA+ B sejtek

Aktiváció: NALT (nasopharynx-associated lymphoid tissue, tonsillák, *Waldeyer féle gyűrű)* Nyálmirigyek stromájába vándorolnak (és a mukózába)

### **IgA**

Polymer Ig receptor + szekretoros komponens segítségével transzepitheliális transzport Állandó jelenlét



Neutralizáció

Agglutináció

Felszín immun-kizárás

Opsonizáció (FcαRI) – antigén prezentálás, degranuláció, citokin termelés

Oxigén szabadgyök termelést fokozza

# Nyál antimikrobiális proteinek

### Defenzinek

Patogén membránt károsítják; antibakteriális, antifungális, antivirális aktivitás

### Laktoferrin

Vas-kötő fehérje; baktériumokat és vírusokat neutralizál, bakteriális membránt károsítja

### Kathelicidinek

Bakteriális membránt károsítják, LPS-t kötnek

### Lizozim

Peptidoglikánt hidrolizál, elsősorban Gram+ baktériumok ellen hatásos

### α-Amiláz

α-1,4-glikozidos kötést hasítja, LPS-t köt, bakteriális adhéziót befolyásolja

### Mucinok

Szekretoros és membrán-kötött forma, patogéneket megkötik és agglutinálják

## Sulcus folyadék/Gingiva crevicularis folyadék (GCF)

Origin and flow of crevicular fluid



Mestecky, Strober, Russell, Kelsall, Cheroutre, Lambrecht. Mucosal Immunology. 4th edition. Copyright © 2015 by Elsevier, Inc

# Sulcus folyadék/Gingiva crevicularis folyadék (GCF)



Tissue-specific immunity at the oral mucosal barrier. Moutsopoulus N et al. Trends Immunol 2018

# Sulcus folyadék/Gingiva crevicularis folyadék (GCF)

### Gingiva kapillárisokból származó transszudátum

Fognyak körül akkumulálódik

Normálisan ~1ml/nap, periodontitis és gingivitis esetén jelentősen emelkedik

### Tartalom:

humorális komponensek: antitestek (IgG), citokinek, emésztő enzimek, antimikrobiális peptidek

sejtes komponensek: neutrofil granulociták, limfociták

Funkció: fog és gingiva közti sulcus tisztítása

# Gingival crevicular fluid (GCF)

### Collection of GCF



Comparison of matrix metalloproteinase-3 and tissue inhibitor of matrix metalloproteinase-1 levels in gingival crevicular fluid in periodontal health, disease and after treatment: a clinico biochemical study. 2013. Kumar PM et al, Dent Res J.